Quantcast
Channel: Le blog de l'habitat durable
Viewing all articles
Browse latest Browse all 2312

Un nouveau mode de diffusion de la lumière dans de minuscules fibres optiques 50 fois plus fines qu'un cheveu

$
0
0
Un nouveau mode de diffusion de la lumière dans de minuscules fibres optiques 50 fois plus fines qu'un cheveu

Un nouveau mode de diffusion de la lumière dans de minuscules fibres optiques 50 fois plus fines qu'un cheveu

Des chercheurs de l'institut Femto-ST (CNRS/UFC/UTBM/ENSMM), en collaboration avec des collègues du Laboratoire Charles Fabry (CNRS/Institut d'Optique Graduate School) viennent de découvrir un nouveau mode de diffusion de la lumière dans de minuscules fibres optiques 50 fois plus fines qu'un cheveu ! Ce phénomène, qui varie selon l'environnement de la fibre, pourrait être exploité pour concevoir des capteurs innovants et ultra-sensibles. Ces travaux sont publiés le 24 octobre 2014 dans la revue Nature Communications.

Les microfibres optiques sont des fibres de verre effilées 50 fois plus fines qu'un cheveu, au diamètre proche voire inférieur au micromètre (un millième de millimètre). Pour produire ces minuscules objets, des chercheurs du Laboratoire Charles Fabry ont chauffé et étiré des fibres optiques utilisées pour les télécommunications et mesurant 125 micromètres de diamètre. La suite de l'étude s'est déroulée à l'institut Femto-ST, à Besançon. En injectant un faisceau laser dans ces fines mèches de verre, des chercheurs du CNRS ont observé, pour la première fois, un nouveau mode de diffusion Brillouin de la lumière, impliquant des ondes acoustiques de surface. Cette découverte a ensuite été confirmée par une simulation informatique, qui a permis de vérifier le mécanisme physique en jeu. Le mode de diffusion Brillouin est une diffusion « inélastique » de la lumière par les ondes acoustiques d'un milieu. En d'autres termes, les propriétés du milieu modifient le trajet des ondes lumineuses ainsi que leur longueur d'onde. Quant aux ondes acoustiques de surface, elles sont de même nature que les ondes sonores que perçoit notre oreille, mais d'une fréquence bien plus grande, donc inaudibles.

Comme le diamètre des fibres utilisées est inférieur à la longueur d'onde de la lumière utilisée (1,5 micromètre, dans l'infrarouge), celle-ci y est extrêmement confinée. Sur son trajet, la lumière fait vibrer de manière infime le matériau, déplaçant la matière de quelques nanomètres (ou millionièmes de millimètre). Cette déformation se manifeste par une onde acoustique qui se déplace à la surface de la fibre à 3 400 mètres par seconde, d'après les résultats des chercheurs. L'onde agit en retour sur la propagation de la lumière : une partie du rayonnement lumineux est renvoyée en sens inverse et avec une longueur d'onde différente.

Ce phénomène n'avait jamais été observé jusqu'ici, car il se produit uniquement lorsque la lumière est confinée dans une fibre plus fine que sa longueur d'onde. En effet, dans une fibre optique standard, la lumière se propage essentiellement dans le cœur de la fibre (d'un diamètre de 10 micromètres). Par conséquent, elle ne génère pas d'ondes de surface.

Comme elles se déplacent à la surface des microfibres, les ondes générées par le confinement de la lumière sont sensibles aux facteurs de l'environnement, tels que la température, la pression ou le gaz ambiant. Cela ouvre la voie à la conception de capteurs optiques très sensibles et très compacts pour l'industrie. Ces résultats contribuent également à approfondir nos connaissances sur les interactions fondamentales entre la lumière et le son, à l'échelle de l'infiniment petit. Par opposition aux capteurs électriques, les capteurs optiques sont des capteurs passifs (qui se passent d'alimentation électrique), et qui utilisent les propriétés de la lumière.

Un faisceau laser (émettant à la longueur d'onde de 600 nanomètres) est guidé dans une microfibre optique. Un faisceau laser rouge (hélium-néon) passe dans une microfibre optique dont le diamètre fait un micromètre. La fibre est encapsulée dans un système étanche, pour éviter qu'elle s'oxyde ou casse.

© Thibaut Sylvestre, Institut Femto-ST/CNRS

© Thibaut Sylvestre, Institut Femto-ST/CNRS

© Thibaut Sylvestre, Institut Femto-ST/CNRS

© Thibaut Sylvestre, Institut Femto-ST/CNRS


Viewing all articles
Browse latest Browse all 2312

Trending Articles